An infinite family of biquasiprimitive 2-arc transitive cubic graphs

نویسندگان

  • Alice Devillers
  • Michael Giudici
  • Cai Heng Li
  • Cheryl E. Praeger
چکیده

A new infinite family of bipartite cubic 3-arc transitive graphs is constructed and studied. They provide the first known examples admitting a 2-arc transitive vertex-biquasiprimitive group of automorphisms for which the stabiliser of the biparts is not quasiprimitive on either bipart.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Cubic Graphs Admitting an Edge-Transitive Solvable Group

Using covering graph techniques, a structural result about connected cubic simple graphs admitting an edge-transitive solvable group of automorphisms is proved. This implies, among other, that every such graph can be obtained from either the 3-dipole Dip3 or the complete graph K4, by a sequence of elementary-abelian covers. Another consequence of the main structural result is that the action of...

متن کامل

Countable locally 2-arc-transitive bipartite graphs

We present an order-theoretic approach to the study of countably infinite locally 2-arc-transitive bipartite graphs. Our approach is motivated by techniques developed by Warren and others during the study of cycle-free partial orders. We give several new families of previously unknown countably infinite locally-2-arc-transitive graphs, each family containing continuum many members. These exampl...

متن کامل

Quartic half-arc-transitive graphs with large vertex stabilizers

A 1 2 -arc-transitive graph is a vertexand edgebut not arc-transitive graph. In all known constructions of quartic 1 2 -arc-transitive graphs, vertex stabilizers are isomorphic to Z 2,Z 2 2 or to D8. In this article, for each positive integer m ≥ 1, an infinite family of quartic 1 2 -arctransitive graphs having vertex stabilizers isomorphic to Z m

متن کامل

A construction of an infinite family of 2-arc transitive polygonal graphs of arbitrary odd girth

A near-polygonal graph is a graph Γ which has a set C of m-cycles for some positive integer m such that each 2-path of Γ is contained in exactly one cycle in C. If m is the girth of Γ , then the graph is called polygonal. We provide a construction of an infinite family of polygonal graphs of arbitrary even girth with 2-arc transitive automorphism groups, showing that there are infinitely many 2...

متن کامل

On 2-fold covers of graphs

A regular covering projection ℘: X̃ → X of connected graphs is G-admissible if G lifts along ℘. Denote by G̃ the lifted group, and let CT(℘) be the group of covering transformations. The projection is called G-split whenever the extension CT(℘) → G̃ → G splits. In this paper, split 2-covers are considered, with a particular emphasis given to cubic symmetric graphs. Supposing that G is transitive o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009